15,709 research outputs found

    Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining.

    Get PDF
    DNA double-strand breaks (DSBs) are one of the most dangerous forms of DNA lesion that can result in genomic instability and cell death. Therefore cells have developed elaborate DSB-repair pathways to maintain the integrity of genomic DNA. There are two major pathways for the repair of DSBs in eukaryotes: homologous recombination and non-homologous end-joining (NHEJ). Until very recently, the NHEJ pathway had been thought to be restricted to the eukarya. However, an evolutionarily related NHEJ apparatus has now been identified and characterized in the prokarya. Here we review the recent discoveries concerning bacterial NHEJ and discuss the possible origins of this repair system. We also examine the insights gained from the recent cellular and biochemical studies of this DSB-repair process and discuss the possible cellular roles of an NHEJ pathway in the life-cycle of prokaryotes and phages

    Closing the Loop: Creating Deliverables That Add Value

    Get PDF
    As special collections librarians and liaison librarians work together to create in­novative experiences working with primary source material, it is important to remember students have much to offer in the collaborative design process. In this case study, Prudence Doherty, a special collections librarian, and Daniel DeSanto, an instruction librarian, describe a project they initiated and implemented with upper-level education majors at the University of Vermont (UVM). The students were pre-service teachers (student teachers working toward degree and licensure) enrolled in Social Education and Social Studies, a course that focuses on teaching methods, assessment alternatives, and resources used in the elementary (K–4) classroom. The project gave the pre-service teachers an opportunity to work with three digital collections in order to design lesson plans for elementary-aged stu­dents. The project closed the loop of learn, create, and teach by requiring students to learn evaluative approaches to working with historical material and then create lesson plans based on those approaches. By creating professional resources for other teachers, the students added value to the digital collections

    Advanced grid authorisation using semantic technologies - AGAST

    Get PDF
    Collaborative research requires flexible and fine-grained access control, beyond the common all-or-nothing access based purely on authentication. Existing systems can be hard to use, and do not lend themselves naturally to federation. We present an access-control architecture which builds on RDFs natural strength as an integration framework, which uses RDF scavenged from X.509 certificates, and policies expressed as ontologies and SPARQL queries, to provide flexible and distributed access control. We describe initial implementations

    Photon statistics and dynamics of Fluorescence Resonance Energy Transfer

    Get PDF
    We report high time-resolution measurements of photon statistics from pairs of dye molecules coupled by fluorescence resonance energy transfer (FRET). In addition to quantum-optical photon antibunching, we observe photon bunching on a timescale of several nanoseconds. We show by numerical simulation that configuration fluctuations in the coupled fluorophore system could account for minor deviations of our data from predictions of basic Forster theory. With further characterization we believe that FRET photon statistics could provide a unique tool for studying DNA mechanics on timescales from 10^-9 to 10^-3 s.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Ribonucleolytic resection is required for repair of strand displaced nonhomologous end-joining intermediates

    Get PDF
    Nonhomologous end-joining (NHEJ) pathways repair DNA double-strand breaks (DSBs) in eukaryotes and many prokaryotes, although it is not reported to operate in the third domain of life, archaea. Here, we describe a complete NHEJ complex, consisting of DNA ligase (Lig), polymerase (Pol), phosphoesterase (PE), and Ku from a mesophillic archaeon, Methanocella paludicola (Mpa). Mpa Lig has limited DNA nick-sealing activity but is efficient in ligating nicks containing a 3′ ribonucleotide. Mpa Pol preferentially incorporates nucleoside triphosphates onto a DNA primer strand, filling DNA gaps in annealed breaks. Mpa PE sequentially removes 3′ phosphates and ribonucleotides from primer strands, leaving a ligatable terminal 3′ monoribonucleotide. These proteins, together with the DNA end-binding protein Ku, form a functional NHEJ break-repair apparatus that is highly homologous to the bacterial complex. Although the major roles of Pol and Lig in break repair have been reported, PE’s function in NHEJ has remained obscure. We establish that PE is required for ribonucleolytic resection of RNA intermediates at annealed DSBs. Polymerase-catalyzed strand-displacement synthesis on DNA gaps can result in the formation of nonligatable NHEJ intermediates. The function of PE in NHEJ repair is to detect and remove inappropriately incorporated ribonucleotides or phosphates from 3′ ends of annealed DSBs to configure the termini for ligation. Thus, PE prevents the accumulation of abortive genotoxic DNA intermediates arising from strand displacement synthesis that otherwise would be refractory to repair

    Semantic security: specification and enforcement of semantic policies for security-driven collaborations

    Get PDF
    Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)
    corecore